Mostrando entradas con la etiqueta Helicópteros. Mostrar todas las entradas
Mostrando entradas con la etiqueta Helicópteros. Mostrar todas las entradas

23 enero 2023

Entornos Visuales Degradados, DVE (Degraded Visual Environments ). Situación compleja en operaciones con helicópteros (2ª parte)

 

Francisco Francés Torrontera, redactor, fotógrafo, freelance, aeronáutica, aviación, helicópteros, defensa, ejércitos, operaciones especiales, fotografía, redacción, artículos.
Viene de:

En la primera parte de este artículo explicaba los factores fisiológicos, técnicos y de procedimiento que intervienen durante las maniobras con helicópteros bajo condiciones de visibilidad degradada. Conocidos los mismos, en esta segunda parte me centraré en detallar los procedimientos básicos recogidos en los manuales de operación elaborados por diferentes socios de la Alianza, para llevar a cabo las maniobras de toma y despegue bajo condiciones Brown Out/White Out que llevan a minimizar, que no eliminar, los riesgos que dichas maniobras traen implícitos.

PROCEDIMIENTO PARA EL ATERRIZAJE
La toma en polvo/nieve suelta es el momento más peligroso de todos los tipos de vuelo que se puedan producir bajo condiciones DVE, especialmente si la misma se tuviera que realizar en condiciones de luz deficientes. Para afrontarla el piloto debe tener claro el momento y posibilidad de abortar la maniobra antes de iniciar la misma, anteponiendo la seguridad propia, la de los pasajeros y de la aeronave ante el imperativo táctico u operacional.
Se torna fundamental que las tripulaciones estén debidamente adiestradas en este tipo de maniobras, a la vez que la coordinación entre ellas pasa a ser vital llevando a cabo una planificación sistemática y minuciosa y si lo permite la situación táctica, es conveniente realizar un reconocimiento previo de la zona de toma. Otro factor de ayuda con el que quizá no siempre se pueda contar es el de pedir a las tropas de superficie que la balicen y acondicionen en la medida de sus posibilidades y de su formación en este ámbito.
Fundamental será el cálculo de potencia disponible, el control del radar altímetro y la dirección del viento que, si la situación táctica lo permite y en base a la norma general, deberá ser siempre con el mismo en cara. Puede darse el caso de que el entorno en el que se encuentra el punto de toma o el entorno táctico obliguen a realizar la misma con un componente diferente de viento lateral. En tal caso, si la velocidad de dicho viento hace factible la toma, y atendiendo al costado desde el que se reciba el mismo, la tripulación determinará cuál de los dos pilotos está en mejor situación para llevar el helicóptero al suelo. Si el viento sopla entre la 1 y las 3, en función de la intensidad del mismo es probable que el piloto a la derecha disponga de algunos segundos más fuera de la nube de polvo/nieve con lo cual, estará en mejor disposición de poder pilotar el aparato. Circunstancias contrarias se producirán si el viento sopla entre las 9 y las 11. Será entonces el piloto izquierdo quién dispondrá de más tiempo fuera de la nube.
Otro factor a tener en cuenta por parte de la tripulación atendiendo a la falta de visibilidad y pérdida de referencias a la que se van a enfrentar en el momento en el que el polvo/nieve los “engulla”, será el de realizar la maniobra siempre disponiendo de potencia suficiente de tal forma que esto les permita iniciar un ascenso inmediato para abortar en caso de desorientación.


Tal es la importancia que en la Alianza se le da a estas maniobras que se decidió, en un esfuerzo conjunto entre socios, trabajar en el desarrollo y perfeccionamiento de los procedimientos para tomas en condiciones DVE, que llevaran a aumentar los márgenes de seguridad a la vez que reducieran los tiempos de exposición al riesgo.
En los estudios realizados se analizaron y perfeccionaron fundamentalmente cuatro tipos de maniobra teniendo en cuenta los escenarios de operación, el entorno en el que se encuentre el punto de toma, y la situación táctica. Factor fundamental para el desarrollo y actualización de estos procedimientos suponen las nuevas tecnologías con las que cuentan hoy en día los helicópteros más modernos, y que mencionaba en la primera parte de este artículo, que incorporan sistemas de ayuda al vuelo y autopilotos que contribuyen de sobremanera a aumentar la seguridad durante la maniobra.
Como todos los procedimientos operativos, el desarrollo de los mismos se basa en una serie de técnicas comunes que requerirán de una adaptación propia en este caso, al tipo y modelo de helicóptero con el que se vuela y lleva a cabo la operación. Hablamos de velocidades, potencias, alturas etc. descritas también en la primera parte de este texto.
 

TÉCNICAS DE ATERRIZAJE
-Aproximación directa al suelo.
Este procedimiento da comienzo realizando una aproximación desde una altura (AGL) establecida, con el helicóptero nivelado y a velocidad predeterminada. El piloto que vuele la aeronave, una vez identificada la zona de toma y durante el vuelo de aproximación buscará un punto de referencia que utilizará para mantener el rumbo y la deriva durante la fase final de la aproximación. El segundo piloto apoya al que vuela la aeronave realizando un reconocimiento exhaustivo del punto de toma y su entorno para detectar posibles obstáculos, a la vez que realiza comprobaciones de parámetros evidenciando que todos son correctos y se dispone de potencia suficiente. Si se vuela con mecánico de a bordo el procedimiento puede variar siendo este el encargado de ir comprobando los parámetros mientras el segundo piloto comprueba el exterior de forma continuada. En el momento que determinará el piloto que vuela la aeronave se iniciará el descenso mantenido entorno a los 200-300 pies por minuto, a una velocidad que podemos estimar de forma general entre los 70 y 50 nudos, que se reducirá en la senda de descenso que lleve a la aeronave hasta el suelo. Hay que tener en cuenta que en este tipo de tomas el ángulo de aproximación suele ser más pronunciado con la intención de dejar la nube de polvo atrasada durante el mayor tiempo posible.
Durante el descenso el piloto, además de mantener el punto de referencia hasta que lo pierda por la nube de polvo/nieve, establecerá también el punto para abortar la maniobra en caso de pérdida de deriva o desorientación. De igual forma comprobará que se dispone de potencia para poder realizar la maniobra de ascenso rápido para salir de la situación crítica una vez se ha decidido abortar.
Es fundamental apoyarse en las indicaciones del “cuarto tripulante”, tiradores/tripulante de cabina que, desde sus puestos en la cabina trasera, y con comunicaciones fluidas y concisas, informarán a los pilotos de la situación que se produce los sectores que estos controlan desde su posición y de los que los pilotos no tienen control.
Una vez metidos en la nube de polvo/nieve la referencia de instrumentos para controlar la velocidad, deriva y altura será fundamental. El trabajo en cabina entre la tripulación ha de ser totalmente coordinado. El helicóptero debe llegar al suelo directamente sobrepasando el efecto suelo en el menor tiempo posible sin deriva, sin guiñada, estabilizado y sin velocidad traslacional. En el momento de la toma y sin bajar el paso por completo la tripulación verifica que el aparato está nivelado sin inclinaciones, o con inclinaciones dentro de límites, para una vez verificado bajar el paso por completo y asentar el aparato sobre el terreno.
En este procedimiento pueden presentarse, como riesgos más notables, una excesiva actitud de morro alto en el momento del frenado y de la toma que puede provocar un golpe brusco de la cola o en su caso la rampa. También se puede dar la pérdida de orientación y/o entrada en deriva si no se sobrepasa el efecto suelo de forma rápida para evitar un estacionario bajo.

Aproximación directa al suelo



-Toma rodada corta
El procedimiento para este tipo de toma es similar en su parte inicial al que acabo de explicar para la toma directa al suelo, pero con la salvedad de que termina con una toma rodada corta. En este caso la tripulación tiene una menor percepción de desaceleración pues se mantiene velocidad de avance durante toda la maniobra, siendo esta velocidad la que retrasa la aparición de la nube de polvo/nieve, a la vez que la deja en el sector trasero de la aeronave durante más tiempo. Para esta toma es fundamental conocer las características del terreno para saber si el mismo permite rodar una vez en el suelo.
Si el terreno es blando,  con grandes acumulaciones de arena/nieve o de carácter irregular con inclinaciones que puedan poner al aparato fuera de límites,  la tripulación evitará realizar esta toma ya que los niveles de riesgo son sumamente elevados. La acumulación de arena/nieve, irregularidades con grietas y/o agujeros pueden provocar una desaceleración brusca que dañe el tren de aterrizaje o en su caso, puede provocar el desplazamiento del disco del rotor hacia adelante haciendo que el rebufo levante elementos que dañen el aparato. Otro riesgo que se puede generar con un frenazo brusco es el de dañar el rotor sacándolo de límites si dicho frenazo es muy acusado. Y por último,  una actitud de morro alto en el momento de la toma podrá dañar el tren trasero, la cola o la rampa como también puedo ocurrir en la toma directa al suelo.

Toma rodada corta


-Toma desde estacionario bajo
Atendiendo a los factores que afectan a la percepción y comportamiento humanos bajo situaciones como las descritas a lo largo de este artículo, este procedimiento, y también el siguiente están especialmente aconsejados para ser realizados con helicópteros que cuenten con autopilotos en los que apoyarse para proceder con la toma.
De otra forma el nivel de riesgo, sobre todo en el último tramo, es tan sumamente elevado que incrementa la probabilidad de accidente en niveles muy exponenciales.
La aproximación inicial es similar a las descritas para tomas directas y rodadas con la salvedad de que el piloto detendrá el avance y el descenso hasta quedarse en estacionario sobre el punto de toma seleccionado. La altura para este estacionario será aquella que permita a la tripulación ver en todo momento el terreno, manteniendo de esta forma la seguridad evitando golpes con la cola o rampa durante el frenado. La ayuda de los tripulantes de cabina/tiradores vuelve a ser vital informando en todo momento de la situación en los sectores que estos controlan.
La ayuda de los autopilotos es muy recomendable y debería tornarse fundamental; dejar hacer al helicóptero. Desde el estacionario mantenido por el aparato de forma automática, al que se ha podido llegar durante una aproximación realizada también por el propio sistema, el piloto solo trabajará sobre los actuadores del sistema de paso para realizar el descenso controlado que llevará a cabo la propia aeronave. Esta, de forma estabilizada reacciona únicamente a los datos de descenso que le marque el piloto de la forma que cada aeronave y sus sistemas tengan establecidos.

Este procedimiento, que debería limitarse reduciendo al máximo el tiempo en estacionario, ejecutado de forma manual sin ayudas automáticas de la aeronave tiene como riesgos implícitos la más que posible pérdida de orientación del piloto una vez metido en la nube de polvo/nieve, con la posterior pérdida de control de la aeronave.

Toma desde estacionario bajo




-Toma desde estacionario alto.
A diferencia de las anteriores, en esta maniobra el procedimiento creado no contempla una aproximación tendida hacia el punto de toma si no que, manteniendo vuelo nivelado, se llega a un estacionario alto sobre el punto de toma para iniciar desde el mismo el descenso vertical hasta el suelo. Es fundamental en esta toma apoyarse en los autopilotos para realizarla de forma segura ya que la permanencia en la nube de polvo puede darse por un tiempo significativo. Es fundamental también comprobar que se dispone de potencia para llevar a cabo el estacionario fuera del efecto suelo (HOGE), así como para abortar la toma si fuera necesario una vez iniciada la maniobra. Con el helicóptero estabilizado el piloto actuará sobre los sistemas para iniciar el descenso comprobando en todo momento que no se produce deriva alguna y que se pierde altura de forma estabilizada. Especial atención se deberá prestar a la estabilización del helicóptero una vez metidos en la nube de polvo donde se dejará de disponer de referencias exteriores hasta la llegada al suelo.
Este procedimiento es especialmente útil cuando la zona de toma se encuentra en área confinada, y aconsejada para ejecutarla sobre superficies duras en las que no se prevea un levantamiento masivo de polvo.
Como se ha comentado en las anteriores maniobras este procedimiento tiene como riesgos más notables, si el mismo se realiza de forma manual sin apoyarse en las ayudas automáticas del helicóptero, la desorientación del piloto durante el estacionario dentro de la nube y durante el descenso, con la más que probable pérdida de control del aparato si como digo, se realiza de forma manual.

Toma desde estacionario alto
   
  


Descritas hasta aquí las maniobras para la toma, de la misma forma hay que hacer mención a los procedimientos para realizar la maniobra inversa de despegue, que tambien se verá afectada por la pérdida de referencias por las nubes de polvo o nieve.
Esta maniobra estará determinado en la mayoría de las ocasiones por la potencia disponible como primer factor, y por las condiciones de la HLZ en segundo lugar. Se puede hablar de tres tipos de despegue estandarizados en los procedimientos desarrollados por los equipos de trabajo de la coalición y sus partners.

-Despegue de máximas características. Se trata de un ascenso vertical con la máxima potencia, que permita salir de la nube lo más rápido posible. El piloto deberá comprobar los instrumentos mientras permanezca en dicha nube para cerciorarse de que el ascenso se realiza con la aeronave totalmente estabilizada y nivelada. En helicópteros con autopilotos que permitan está maniobra los riesgos de desestabilización se reducen debiendo dejar al aparato que maniobre de forma autónoma. Una vez fuera del polvo o la nieve se iniciará el vuelo traslacional disponiendo ya de total visibilidad en la línea de vuelo.



-Despegue con velocidad. Para esta maniobra es imperativo que la tripulación tenga claro que no existe ningún obstáculo por delante que impida la salida o genere impacto alguno, y siempre realizarla en contra del viento. En el momento de aplicar potencia y ya ligero sobre el tren de aterrizaje, se aplica cíclico hacia adelante para iniciar el vuelo traslacional en el mismo momento en el que se pierde contacto con el suelo de tal forma, que la aeronave salga por delante de la nube de polvo.
-Despegue rodado. Ni que decir tiene que este procedimiento está pensado fundamentalmente para aquellos helicópteros cuyo tren de aterrizaje sea de rueda. Y también especialmente recomendado para realizarlo sobre superficies duras que no tengan grandes cantidades de arena/nieve acumulada, contando con una longitud útil que permita disponer de la distancia necesaria para el despegue. Antes de iniciar la maniobra, y si la superficie tuviera una capa fina de arena/nieve, la tripulación puede aplicar paso levemente con la intención de disiparla antes de iniciar el rodaje. Aplicando el paso necesario para poner ligero sobre el tren al helicóptero, se aplica cíclico suficiente que le confiera velocidad para iniciar la carrera. Este procedimiento está especialmente recomendado para despegues en los que se disponga de potencia limitada que no permita salir desde estacionario, o permita adquirir velocidad desde el suelo.

Si hasta aquí se han descrito los procedimientos para operaciones diurnas, desde la coalición también se ha trabajado en el desarrollo de la doctrina más adecuada para llevar a cabo este tipo de operaciones en el arco nocturno. Como se ha visto a lo largo de estos textos, los niveles de peligrosidad de las operaciones DVE en condiciones Brown Out/White Out son tan elevados que, siendo conscientes de ello, los equipos de trabajo de la coalición vieron necesario unificar criterios con el objetivo de minimizar estos riesgos a los que se someten los hombres, mujeres y máquinas de nuestros ejércitos. Durante el desarrollo de los procedimientos, el vuelo nocturno ocupó un lugar muy importante ya que los niveles de riesgo se multiplican como detallaba en la primera parte de este artículo.
Partimos de la base de que las tomas en polvo/nieve nocturnas son la parte final de los programas de adiestramiento de tripulaciones, y solo aquellas con las mejores habilidades adquiridas durante las maniobras en el arco diurno, deberían ser las que llevaran a cabo este tipo de maniobras en el arco nocturno.
Tal es el grado de complejidad y riesgo que la mayoría de socios de la coalición restringen sus entrenamientos y los vuelos no esenciales a condiciones por encima de los mínimos establecidos que fijaron en sus manuales entorno a los 10-20mLux.
La doctrina aconseja que, operaciones por debajo de estos mínimos se realicen solo por causas de fuerza mayor dentro de una operación táctica vital, y solamente sean llevadas a cabo por tripulaciones con las habilidades necesarias.
Así pues, las técnicas para las tomas nocturnas DVE son una extensión de los protocolos creados para las tomas durante el día, que se completan con la aplicación de unos procedimientos específicos estudiados y desarrollados para minorizar los riesgos inherentes a la ejecución de estas maniobras durante el arco nocturno.

Una de las particularidades más importantes de la visión nocturna es que el ojo humano no dispone de una profundidad de campo sobre el terreno como la que disponemos con la luz del día. Atendiendo a este dato, en la medida de lo posible se deberá contar en la zona de toma con referencias fijas de gran contraste con el fondo de tal forma que siempre se disponga de ellas. Es fundamental que el terreno no cuente con pendientes, agujeros o irregularidades y que la tripulación tenga este dato claro, bien porque lo han podido reconocer durante el día, o bien porque las tropas de superficie, entrenadas para ello, han reconocido el punto de toma y lo declaran apto para la misma, trasmitiéndolo a la tripulación. Se deberá, siempre que sea posible, balizar la HLZ ya sea con iluminación de vehículos cruzados, con cyalúmenes, o con los medios que se dispongan y sean adecuados para ello.
Ni que decir tiene que, como se explicaba en el caso de las operaciones diurnas, si los helicópteros cuentan con sistemas de autopiloto la tripulación se deberá apoyar en ellos para reducir los riesgos y aumentar las garantías de existo de la operación.

Cuantas veces se han visto en las televisiones o en la red, helicópteros llevando a cabo tomas en alguno de los desiertos en los que los conflictos bélicos han hecho de estas aeronaves un recurso vital. Siempre es espectacular ver como se levantan esas masas de arena detrás de las aeronaves que al final acaban engullidas por el polvo, perdiéndose de vista justo antes de llegar al suelo. Después de este texto el lector podrá hacerse una idea de los riesgos elevados de esas imágenes tan espectaculares, de los condicionantes que traen consigo estas maniobras, de todos los agentes humanos y técnicos implicados a la hora de ejecutarlas, y podrá también ponerse en "los zapatos" de los pilotos y tripulaciones protagonistas de esos espectaculares videos.



(Fin)

09 enero 2023

Entornos Visuales Degradados, DVE (Degraded Visual Environments ). Situación compleja en operaciones con helicópteros (1ª parte)

 


Francisco Francés Torrontera, Redactor, fotógrafo, freelance, aviación, helicópteros, aeronáutica, defensa, ejércitos, operaciones especiales, redacción, fotografía

Los DVE son consecuencia de los momentos del vuelo en los que se produce el efecto conocido como Brown Out en el que la tripulación se enfrenta a una falta total o parcial de visibilidad en cabina generada por el polvo y arena que son removidos por el rebufo de los rotores fundamentalmente, durante las maniobras de toma y despegue en zonas áridas. Se pueden generar situaciones similares en operaciones sobre zonas nevadas pasando entonces a denominarse el efecto como White Out y también, aunque con menor intensidad, se puede sufrir esta pérdida de visibilidad en maniobras sobre el agua.
Estos fenómenos que generan los Entornos Visuales Degradados requieren que los pilotos dependan en gran medida de los instrumentos, de la coordinación y comunicación adecuada entre la tripulación, así como de su experiencia y pericia a los mandos.
El vuelo en condiciones DVE durante las maniobras críticas de toma y despegue supone un desafío para las tripulaciones de helicópteros, llegando esto a generar hasta el 75% de los accidentes que la coalición internacional ha sufrido en los escenarios en los que la OTAN ha realizado sus operaciones internacionales. Hablamos de Iraq, Afganistán, Siria, Centro África, etc.

La tecnología aplicada al helicóptero ha evolucionado de forma muy rápida en la última década y media permitiendo equipar a los aparatos con sistemas electrónicos de ayuda al vuelo, a la navegación, al pilotaje, de mejora en las comunicaciones y en la seguridad activa y pasiva, que aportan nuevos niveles de seguridad para las operaciones. Y paralelamente al desarrollo de estas nuevas tecnologías se trabaja también en la investigación para la creación de sistemas de ayuda para las maniobras en condiciones DVE, que proporcionen algún grado de visibilidad a través del polvo o la nieve, y que permita identificar posibles obstáculos sobre el terreno y su irregularidad, así como también se estudia el desarrollo de sistemas de alertas ante la presencia de obstáculos.
Hoy por hoy no se ha conseguido un nivel tecnológico suficiente que permita disponer de un tipo de herramientas concretas para tales fines, siendo lo más cercano los equipos FLIR que ofrecen un grado de imagen que contribuye a incrementar la seguridad. En paralelo, las tripulaciones se apoyan en los sistemas automáticos de ayuda al vuelo y autopilotos que hoy en día disponen los helicópteros más modernos, así como en la presentación digital de datos en el casco que facilita disponer de la información necesaria que ayude a mantener la estabilidad del vuelo reduciendo, que no eliminando, los efectos de la desorientación espacial que se genera en condiciones DVE.



Tal es la importancia del DVE que la OTAN creó un grupo de trabajo a principios de la primera década del 2000 cuyos objetivos se centraron en la búsqueda de la mejora de las capacidades de los países socios y de sus PFP (Partners for Peace), para operar de forma segura y efectiva en condiciones visuales degradadas. Para ello los ejércitos aliados compartieron información y procedimientos para las maniobras de toma y despegue, realizaron estudios sobre nuevas tecnologías aplicables a este ámbito, y crearon protocolos de actuación para la mitigación de riesgos durante estas fases del vuelo.
Como parte de todo el trabajo realizado se evaluó la gravedad de los accidentes sufridos por algunos de los socios durante los efectos Brown Out y White Out, y se creó un archivo estadístico de accidentes e incidentes atribuidos a estos fenómenos. Se evaluaron los desarrollos de nuevas tecnologías de aplicación en la aviación de ala rotativa destinadas a minimizar los efectos DVE, se estudiaron y desarrollaron las técnicas y procedimientos de trabajo en cabina (CRM), y se crearon programas de entrenamiento en simulación para todas las maniobras críticas.

Todo este trabajo se completó con la documentación generada con las experiencias de las tripulaciones y pilotos que han sufrido incidentes o accidentes en maniobras bajo dichas condiciones Brouw Out / White Out, dando como resultado un informe final que se puso a disposición de los socios con el fin de completar las doctrinas propias y mejorar la seguridad y operatividad de las operaciones con helicópteros.



ORIENTACIÓN ESPACIAL
Nuestra percepción de posición, movimiento y actitud con respecto a una posición fija se basa en la integración e interpretación neuronal de las señales visuales, vestibulares, sensoriales, y en menor medida del sistema auditivo que también proporciona información sobre nuestra orientación. La interactuación de este conjunto de sistemas es lo que nos proporciona la orientación espacial. Si se produce la falta de interactuación de alguno de estos sistemas el resto intentará compensar la deficiencia. Si la visión es correcta y disponemos de referencias visuales que no son ambiguas, a frecuencias por debajo de 1 a 2 Hz, la vista proporciona información sensorial confiable facilitando una orientación espacio/temporal correcta. Sin embargo, en una situación de nula visibilidad como las producidas por el Brown Out /White Out, o en condiciones de IFR donde el piloto tiene escasa o nula visibilidad del exterior, el sistema vestibular pasa a jugar un papel muy importante.


Nuestras percepciones de orientación están desarrolladas por las reacciones que nuestro sistema sensorial desarrolla en un entorno 1G. Por lo tanto, la exposición a entornos gravitacionales diferentes como el vuelo, contribuyen a que nuestro sistema sensorial sufra alteraciones significativas. En el aire y sometidos a fuerzas de aceleración inusuales la información sensorial, particularmente la vestibular, puede producir interpretaciones equivocadas que generen situaciones potencialmente peligrosas. Por ejemplo, puede generarse una respuesta anómala del sistema que impida percibir las sensaciones de ascenso cuando no se cuenta con información visual.
En condiciones constantes de variación de la magnitud y dirección del campo visual y bajo movimientos de rotación prolongados, el sistema nervioso central es el responsable de determinar qué información sensorial es correcta, y cuál no. Cuando la situación en la que se encuentra el piloto genera información sensorial contradictoria entre nuestros sistemas se genera lo que se conoce como desorientación espacial. Este término es el utilizado para definir el fenómeno por el cual se produce la incapacidad de percibir correctamente la posición, movimiento y actitud de la aeronave respecto al suelo.
El Brown Out /White Out pues suponen unas de las principales causas de desorientación espacial debido a la falta total de visibilidad producida por el polvo, la arena o la nieve en su caso, al ser movidos por el rebufo del rotor, especialmente durante los últimos 70 pies de altura.

CAMPO DE VISIÓN
La principal fuente de información de los pilotos de helicóptero es su contacto visual con el exterior. El ser humano disponemos de un campo visual de 30 grados centrales aproximadamente a través del cual podemos identificar los objetos ubicados dentro de dicho campo. La información procesada por nuestra vista es analizada por lo que conocemos como “nuestra conciencia” que contribuye a tener las percepciones conscientes de orientación y conocimiento del entorno. Durante los vuelos en condiciones visuales nuestro campo visual central permite identificar distancias y profundidades de campo del exterior, pero además de la visión central, nuestro sistema de visión nos ofrece otra información que abarca zonas más amplias del campo visual, y que percibimos a través de lo que se conoce como “periferia visual”. Gracias a esto tenemos conciencia sobre nuestra ubicación y orientación respecto al entorno en el que nos encontramos, a la vez que percibimos el movimiento y actitud.

En resumen, la visión central nos permite percibir un objeto en relación con nuestra posición, mientras que la visión periférica nos orienta en relación con el entorno en el que nos encontramos.


LIMITACIONES FISIOLÓGICAS
La desorientación espacial durante las tomas en polvo o nieve puede generarse debido a las deficiencias sensoriales que son inherentes al humano como hemos visto en líneas anteriores. El sistema vestibular es el encargado de ofrecer las sensaciones de inclinación y aceleración que se generaran durante el vuelo. Las limitaciones de nuestro sistema vestibular respecto al mismo se han demostrado, por ejemplo, en las sensaciones de velocidad que percibimos cuando se trata de velocidades de aceleración, y en la falta de percepción física de las velocidades constantes. También se ha demostrado que existe un grado inferior al umbral de nuestra percepción que no nos permite detectar determinados movimientos de desviación, así como también puede darse el caso de percepción errónea de la velocidad y dirección de movimientos de aceleración a lo largo del eje Z.
Estas limitaciones naturales de nuestro sistema vestibular son las que pueden generar momentos críticos durante las operaciones en condiciones DVE. Las derivas laterales por debajo del umbral de percepción suelen generarse justo antes de la toma, en el momento en el que se reduce la velocidad hasta el umbral en el que nuestro sistema no detecta el movimiento y situación del helicóptero. Los umbrales de detención dependen también de la duración a la que están sometidos nuestros estímulos. Todos estos condicionantes se catalogan como desorientación espacial Tipo I en la que el piloto pierde la conciencia situacional y no se percata de la actitud del helicóptero, generándose una deriva lateral descontrolada.
A estos factores se le añade que el movimiento de la nube de polvo y arena removidos por el rebufo pueden producir en el piloto la sensación de que el helicóptero se encuentra en posición inclinada, de que esté realizando un movimiento de giro, o también puede sufrir el efecto conocido como vección, en el que se tiene la percepción de estar en movimiento cuando en realidad se está en vuelo estacionario. La vección es provocada por el movimiento casi uniforme de la masa de arena que ocupa la mayor parte del campo visual, y se produce normalmente en la dirección contraria a la dirección del estímulo, es decir, si el polvo y la arena giraran en el sentido de las agujas del reloj, la vección podría inducir la sensación de movimiento propio en el sentido contrario.


Además de lo descrito, a estas situaciones se pueden añadir otros agravantes que contribuyen a la desorientación espacial del piloto como son la fatiga, una alta carga de trabajo, estrés motivado por cambios no programados en la misión o el plan de vuelo, o la inexperiencia de la persona en este tipo de maniobras complejas. Especial mención se ha de realizar a las alteraciones sensitivas que se pueden producir cuando estas maniobras se realizan en el arco nocturno con gafas de visión nocturna (GVN).
Las tomas y los despegues en polvo o nieve con GVN son maniobras sumamente complicadas debido a la reducción del campo de visión (FOV), a la falta de profundidad de campo en la imagen que recibe el piloto, a la falta de contraste del exterior y de los objetos cercanos, y a las diferencias de color entre las zonas iluminadas y las zonas de sombra. A esto se le puede añadir el efecto de reflejo en la nueve de polvo o nieve que puede provocar la utilización de iluminación convencional exterior de la propia aeronave o de otro aparato en caso de formaciones, la sensación de vértigo que puede provocar el destello de luces anticoll, y también los destellos que se producen por la abrasión del polvo al contacto con las palas en movimiento, que pueden saturar algunas zonas de las GVN.

PROCEDIMIENTOS Y CARACTERÍSTICAS DE LAS AERONAVES
De los estudios e informes realizados por el grupo de trabajo de los países socios de la OTAN y de sus Partners for Peace resultó la elaboración de una serie de procedimientos básicos con los que afrontar los momentos del vuelo en lo que las tripulaciones se enfrentan al DVE. La técnica común para los aterrizajes normalmente comienza con la fijación de referencias visuales sobre el terreno que ayuden a establecer la aproximación adecuada hasta la zona de toma.
Estas referencias tomadas por el piloto proporcionan la información necesaria para el aterrizaje, pero en el caso de las tomas en polvo, la pérdida repentina de visibilidad anulará por completo las referencias tomadas, eliminando también la percepción de la distancia, velocidad y altura respecto al suelo esenciales para controlar el helicóptero durante la maniobra. La entrada en el Brown Out/White Out se produce cerca del suelo dando esto poco tiempo para reaccionar ante imprevistos, lo que motiva que la tripulación deba tener establecidos unos protocolos de actuación que combinen la transición entre las referencias visuales exteriores y la entrada en instrumentos, sobre todo, para controlar la deriva y altura del helicóptero durante toda la maniobra hasta la llegada al suelo, siendo estos los dos parámetros más críticos durante las tomas y también los despegues. Para ello las tripulaciones deben estar entrenadas para confiar en la lectura de los instrumentos y proceder de forma combinada entre dichas lecturas y las referencias visuales cuando se disponga de las mismas.

El helicóptero, por su naturaleza, es una plataforma inestable que requiere que los pilotos actúen constantemente sobre los mandos para mantener el vuelo en lo que supone una disociación de movimientos entre los miembros superiores e inferiores. Para ayudar a mantener esta estabilidad los helicópteros cuentan con sistemas de ayuda al vuelo que facilitan el pilotaje. Hablamos, por ejemplo, del AFCS en helicópteros “no digitales” y diferentes tipos de autopiloto, y de DAFCS en los helicópteros más modernos con capacidad de vuelo autónomo, incluida la capacidad de tomar de forma automática.
Para garantizar pues un aterrizaje seguro cuando se maniobra con helicópteros que no disponen de sistemas de autopiloto que permite realizar la toma apoyándose en los mismos, es fundamental disponer de referencias para controlar la deriva, la altura sobre el terreno, la velocidad de descenso, la velocidad respecto al suelo, la actitud, las características del terreno y del punto de toma, la distancia a los obstáculos colindantes y la detección de posible actividad en la zona y área cercanas.




Teniendo como factores más importantes el control de la deriva y la velocidad para todos los helicópteros, el control de los factores de actitud, es decir, alabeo, cabeceo y guiñada tendrá su escala de control en función del tipo de helicóptero que se vuele. Uno de estos factores de actitud, concretamente el de cabeceo toma especial relevancia a la hora de realizar un frenado cerca del suelo, dependiendo del tipo de helicóptero.

Las tripulaciones que vuelen helicópteros con rotor de cola convencional deberán aplicar procedimientos en los que se tendrá muy presente al ángulo máximo de cabeceo permitido para las tomas, de tal forma que se evite el impacto de la cola o del rotor de cola con el terreno durante las maniobras de frenado. En el caso de helicópteros como el CH-53 se establece un máximo de 12º de morro alto durante las operaciones cercanas al suelo, 10º en el caso del UH-60, los 12º del NH90 o los 10º del AS-532 Cougar. Teniendo estos datos como generales, diferentes ejércitos como el norteamericano, el español o el francés han incluido en sus guías de maniobra procedimientos específicos para las tomas en función de las alturas respecto al suelo. Así, en sus maniobras aplican la regla nemotécnica de 10-10, 15-15, 20-20 es decir, a alturas de 10pies, 10° de cabeceo máximo, a 15 pies, 15°, a 20 pies 20° y así sucesivamente sin llegar a sobrepasar el máximo cabeceo de cada modelo.

Teniendo en cuenta las características de vuelo de cada helicóptero y aunque se tomen como referencia las normas descritas, los pilotos deberán conocer perfectamente las particularidades de cada modelo, sobre todo, para la ejecución de maniobras cerca del suelo. En el caso de nuestras FAMET podemos poner como ejemplo dos helicópteros que aún teniendo un mismo límite de 10° para el cabeceo cerca del suelo, ambos se comportan de forma diferente en vuelo. Hablamos del Súper Puma HU.21 y el Cougar HT.27. Estos helicópteros que a un golpe de vista pueden parecer iguales, no lo son. Los centros de gravedad de cada uno de ellos están ubicados en estaciones diferentes debido a la diferencia de longitud que existe entre ambos aparatos. El HT.27 es setenta centímetros más largo que el HU.21 lo que provoca que su centro de gravedad se encuentre desplazado hacia adelante, motivado porque en su diseño el incremento de longitud se introdujo por delante del rotor. Esto se traduce en que en vuelo y en estacionario la actitud de uno y otro no sea la misma, manteniendo el HT-27 una actitud de -1° /-2° de morro bajo en estacionario respecto al HU-21 que mantiene una actitud de +3° /4° positivos, debido a que su centro de gravedad está más retrasado. Estas diferencias son fundamentales a tener en cuenta por los pilotos que vuelan ambos aparatos ya que el comportamiento de un helicóptero y otro en las maniobras de frenado cerca del suelo no será el mismo. Se requerirán actuaciones diferentes por parte del piloto ya que serán necesarios más grados de cabeceo en un aparato que en otro para frenarlos en una misma distancia.


Por otro lado, el factor de cabeceo en el caso de helicópteros con sistemas no convencionales como el Chinook con rotores en tándem requerirá unos procedimientos diferentes ya que la altura del rotor trasero no supone un problema en las operaciones cercanas al suelo o en las maniobras de frenado rápido.

Factores que contribuyen a la seguridad durante las tomas en polvo, además de los descritos relacionados con el pilotaje, son aquellos que están relacionados con las tecnologías. Ya hemos mencionado algunos como los AFCS y DAFCS, los autopilotos, etc. pero existen otros como Head-Up Display (HUD), o el Helmet Mounted Sight and Display (HMSD) que ofrecen al piloto información concreta y de forma rápida sobre los parámetros de vuelo, a la vez que le permiten mantener una posición de la cabeza constante hacia adelante, conservando la visión hacia el exterior.

Mencionados los aspectos de vuelo y las ayudas al vuelo y de presentación de datos, un factor de vital importancia en el eslabón de esta cadena de condicionantes son los factores humanos. En esta materia, sobre la que se estudia e investiga profundamente en el sector aeronáutico, se deben tener presentes en el caso de tripulaciones que deben enfrentarse al Brown Out/White Out aspectos relacionados con:

Autoconfianza: la experiencia de los pilotos y su función y peso específico respecto a la misión influyen en la autoconfianza independientemente de la personalidad.

Capacidad de toma de decisiones: el piloto debe tener una especial capacidad para tomar decisiones y actuar en lapsos muy reducidos de tiempo aplicando los procedimientos establecidos.

Coordinación en cabina: los procedimientos de trabajo entre las tripulaciones deben estar perfectamente organizados, aplicando técnicas CRM para mejorar la carga de trabajo a bordo que permitan a cada uno de los pilotos desarrollar sus funciones de forma efectiva, evitando problemas que puedan afectar a la seguridad.

Conocimiento de los sistemas: como se indica en líneas superiores el piloto debe conocer perfectamente las reacciones del helicóptero, sus sistemas de ayudas al vuelo y sus respuestas. Si describíamos alguna característica diferenciadora de dos aparatos de nuestro ejército, podemos poner ahora un ejemplo sobre el AH-64 Apache. En este helicóptero se produce un retraso del orden de 50/100ms entre el movimiento de la cabeza y las respuestas del Pilot Night Vision System (PNVS). Este factor es fundamental tenerlo presente cuando la tripulación se apoye en el sistema para realizar tomas con condiciones de visibilidad degrada.

Como hemos visto hasta ahora son muchos los factores que intervienen durante las maniobras de toma y despegue en condiciones DVE, unos relacionados con las reacciones físicas y sensoriales de la tripulación, otras que tienen que ver con el pilotaje, con la experiencia de los pilotos, y otros con las características de la aeronave. Por todo lo descrito y los riesgos implícitos de las maniobras, resulta fundamental llevar a cabo una gestión de los riesgos que contribuya a la reducción de estos, estableciendo una serie de principios que regulen los procedimientos establecidos en base a una escala jerárquica de los mismos. El hecho de trabajar basándose en dicha escala obedece a que de esta forma se puede actuar priorizando la Reducción de Riesgos ante la Protección de Riesgos es decir, las medidas determinadas como principales se priorizan sobre las medidas de carácter secundario.

Y para establecer estas normas se puede tomar como referencia el siguiente guion teniendo en cuenta que, en función de la misión, situación táctica y zonas de operación, no siempre se podrán aplicar:

- Utilización de zonas de toma acondicionadas. (no siempre se puede materializar esta posibilidad sobre todo en zonas de conflicto)

- Buscar zonas de toma en las que los efectos DVE sean menores.

- Establecer y aplicar los procedimientos más adecuados para estas tomas y despegues. Utilizar técnicas que minimicen los tiempos dentro de la nube de polvo.

- Mejorar las capacidades de las tripulaciones con instrucción constante en este tipo de maniobras, e implementar procedimientos para gestionar los recursos y la carga de trabajo de la tripulación (CRM).

- En los helicópteros más modernos que cuenten con sistemas de ayudas al vuelo y en aquellos que cuentan con autopilotos, apoyarse en los mismos durante las fases de la maniobra en las que estos proporcionen mayor seguridad al vuelo.

- Dotar a las tripulaciones y aparatos de la protección necesaria que contribuya a la supervivencia de las mismas

- Instrucción del personal en técnicas Survival, Evasion, Resistance, and Escape (SERE)


CONDICIONANTES PARA LA MISIÓN
Antes de explicar cuáles son los tipos básicos de maniobra establecidos en los procedimientos que en su día se elaboraron para realizar una toma segura en zonas áridas en las que se perderá la visibilidad y se pasara a una condición DVE, es conveniente hacer repaso a una serie de factores importantes que están directamente vinculados a esta maniobra.

Por un lado, se deben tener presentes las propias características del helicóptero como son, rotor convencional, rotor en tándem o coaxial, el tipo de tren de aterrizaje y la posición del centro de gravedad. Y en referencia a las prestaciones, se debe conocer la potencia disponible teniendo en cuenta las condiciones de altitud de densidad, la carga/peso, y los equipos montados que puedan afectar a la disponibilidad de potencia como pueden ser, por ejemplo, los filtros separadores de partículas EAP.

El factor humano también es necesario analizarlo para comprobar que la tripulación cuenta con la experiencia adecuada y ha recibido la instrucción específica requerida. Que la coordinación de la misma es la adecuada y existe un sistema de trabajo que permita actuar de forma conjunta entre los pilotos y los tripulantes de cabina/tiradores con un lenguaje claro y conciso entre ellas, y con las atribuciones personales muy claras. El rendimiento del personal debe ser supervisado ya que el mismo puede reducirse debido al cansancio generado por situaciones de estrés repetidas, por permanencia en estados de alarma prolongados y, sobre todo, atención especial a los cambios fisiológicos que se pueden presentar por situaciones de calores altos o extremos como los que se dan en zonas áridas, a los que se suman el calor acumulado en las cabinas y el generado por los equipos personales.
El siguiente grupo de análisis se centrará en los factores ambientales durante la operación. Fundamental la altitud de densidad a partir de la cual poder calcular las prestaciones del aparato, los factores meteorológicos como la nubosidad, posibilidad de precipitaciones, vientos, etc.


La hora del día a la que se debe realizar la operación también tiene que ser motivo de análisis ya que en función de la misma los niveles de luz ambiental pueden influir. Con niveles de luz elevados se puede producir deslumbramiento especialmente cuando se genere la nueve de polvo/nieve. De igual forma una excesiva luz puede dificultar el reconocimiento del terreno no teniendo profundidad de campo, así como también puede dificultar la visión de las zonas de sombra que normalmente se percibirán muy oscuras. Y en el caso contrario, en las horas de orto y ocaso con luces muy atenuadas y horizontales, se puede no disponer del contraste suficiente con el terreno dificultando el reconocimiento del mismo.
Líneas de alta tensión y cables, el tipo de superficie sobre la que se tiene previsto tomar, el tamaño de la zona de aterrizaje y la ubicación de otros aparatos si el vuelo es en formación, son el resto de condicionantes que el piloto debe tener estudiados antes del inicio de la misión.

Y para terminar con los factores vinculados a las operaciones con helicópteros y a la maniobra protagonista de este artículo, la toma en polvo/nieve, mencionar aquellos otros relacionados con la misión que podemos denominar tácticos, que están implícitos en las operaciones militares y que también requieren su estudio. En primer lugar, es necesario que la tripulación tenga asumido el imperativo operacional que determina la relación riesgo-beneficio. Posteriormente a este punto que fundamentalmente es de carácter interno/personal, el estudio de la misión es el siguiente paso. Estudiar la inteligencia que se disponga ayudará a determinar el nivel de amenaza existente en la zona de operaciones para desde ese punto, realizar el plan de vuelo más adecuado aplicando las medidas de seguridad oportunas.

(Continuará)


















06 septiembre 2022

CH-47 DELTA españoles para combatir en fuego


Fco.Francés Torrontera, redactor, fotógrafo, freelance, helicópteros, aeronáutica, aviación, defensa, ejército operaciones especiales, escritor, fotografía, reportajes, fotoperiodísmo.

Ayer se publicaba en la Revista Ejércitos mi artículo sobre el proyecto planteado por el Ministerio de Transición Ecológica (MITECO) en colaboración con el de Defensa y el Ejército de Tierra, en el que se contempla la utilización de los últimos CH-47 D en servicio para la lucha contra incendios (LCI)

La utilización del helicóptero Chinook en la LCI como bombardero aéreo nunca hasta ahora se había puesto en práctica en nuestro país, no así en países de nuestro entorno europeo donde estos helicópteros si son utilizados en este tipo de operaciones.

La situación geopolítica que se vive en este momento acaecida por el conflicto generado tras la invasión de Ucrania por parte de Rusia, que ha motivado la imposición de sanciones a este último país, provocan que entre todos los sectores afectados por dichas sanciones, el aeronáutico no "escape" a ellas.

Esta repercusión llega a afectar a las capacidades del Estado para hacer frente al mal endémico que verano tras verano nos asola y para las que ya se está buscando alternativa.

Formando parte del dispositivo aéreo que el MITECO pone en servicio todos los veranos hemos visto hasta ahora como el helicóptero pesado Ka-32 de origen ruso se incluía en la plantilla de aeronaves de ala rotatoria con la misión exclusiva de bombardero aéreo. 

 Pues bien, entre este grupo de sanciones mencionadas se encuentran las aplicadas a la industria aeronáutica rusa que en el caso que nos atañe, afectan al fabricante de este helicóptero como responsable final de las fases de mantenimiento superior de este modelo, así como del suministro de repuestos para las flotas Ka-32 a nivel internacional.

Actualmente y en lo que concierne a la operatividad de estas ocho aeronaves propiedad de las operadoras españolas contratadas por el Ministerio, la Agencia Española de Seguridad Aérea (AESA) aprobó en su momento una exención de la inspección de 14 meses, hasta el 31 de octubre del presente año, fecha tras la cual los aparatos dejarán de ser operativos aun estando suscrito y en vigor el contrato de los ocho helicópteros hasta el 31 de mayo del 2023.

Esta situación va a suponer la pérdida de las capacidades pesadas en la LCI mediante la utilización de helicópteros, lo cual requiere una alternativa destinada a sustituirlas que ha de comenzar a gestionarse de forma inminente si se quiere disponer de medios que suplan esta pérdida el verano que viene.

Esta situación geopolítica que no tiene visos de cambiar a medio plazo genera consecuentemente incertidumbre e imposibilita la elaboración de la planificación necesaria para la contratación de los recursos de la próxima campaña, motivando esto la búsqueda urgente de soluciones por parte de los responsables técnicos del MITECO.

Y es aquí donde entra en juego el CH-47D y los cuatro último aparatos todavía operativos. 

En el artículo podréis conocer en detalle lo pensado y recogido en forma de proyecto inicial por parte del MITECO para contar con este helicóptero pesado en la lucha contra incendios...............

Espero os resulte interesante

Chinook CH-47 "Delta" españoles para la lucha contra incendios - (revistaejercitos.com)

04 marzo 2022

Conoce el CH-47 FOXTROT Bloque I (2ª parte)

 

Francisco Francés Torrontera, redactor, fotógrafo, freelance, fotografía, Defensa, helicópteros, aeronáutica, Ejército, operaciones especiales, aviación


Tras detallar en la primera parte de este artículo los cambios del Foxtrot en lo que concierne a su estructura primaria, a la secundaria, las mejoras en alguno de sus sistemas mecánicos de vuelo y explicar el sistema CPHE, en esta segunda parte terminaré de detallar y dar a conocer el resto de cambios más importantes que trae de la mano este nuevo Chinook.

Como parte del proyecto lanzado por el Departamento de Defensa norteamericano con el que se pretende estandarizar algunos sistemas de las diferentes aeronaves de sus fuerzas armadas, Boeing integra en el Foxtrot el Common Avionics Architecture System (CAAS) o Sistema de Arquitectura de Aviónica Común desarrollado por Rockwell Collins; sistema que además se instala en los MH-47G y en algunas de las modernizaciones de los Chinook SD.
Este proyecto se creó con el objetivo fundamental de conseguir rentabilizar esfuerzos y recursos en un contexto de ahorro en la inversión tanto de adquisición, como de formación y operación, haciendo comunes algunos de los sistemas que dotan a las aeronaves de ala rotatoria de los diferentes ejércitos norteamericanos. En este sentido también el fabricante Sikorsky integra el CAAS en sus helicópteros CH-53K, HH/UH-60M, MH-60L/M, MH-60T y S-70i.

El CAAS lo compone un sistema de cabina digitalizada en el que se integran, en base a un Bus de datos y de forma integrada los equipos de vuelo, de comunicaciones, Data Link l, mensajería electrónica, IFF, equipos de navegación, cartografía digital con simbología sobreexpuesta, piloto automático, equipos de guerra electrónica y equipos de gestión y ayuda a la misión. A todo ello se le unen los equipos de verificación de estado de componentes, equipos de autodiagnóstico y simulación de prestaciones, y sistemas de advertencia y precaución.
Todo integrado en un mismo interfaz hombre/máquina que permite a la tripulación realizar una gestión de cabina optimizada, a la vez que intuitiva.
El cockpit lo componen cinco pantallas multifunción de cristal líquido Multi-Function Display and Dedicated (MFD) que, distribuidas en dos para cada piloto más una central, presentan y recogen todos los datos de los sistemas descritos en líneas superiores.

El CAAS es gestionado por el bus 1155, un procesador y los gestores CDU o Control Display Unit ubicadas en la consola inclinada central, una para cada piloto. A través de las CDU´s la tripulación gestiona y accede a los controles de sistemas de la aeronave, realiza la edición de planes de vuelo, introduce comunicaciones, etc. etc. Ambas CDU cuentan con redundancia total de sus sistemas y se pueden operar de forma simultánea e independiente de tal forma que mientras una se utiliza para controlar los sistemas, la otra puede ser utilizada para editar y gestionar planes de vuelo.
Los equipos de aviónica integrados pasan por agrupar los sistemas de comunicaciones de navegación y transponder.
En lo relativo a las comunicaciones el “Foxtrot” monta radio VHF-AM/FM, radio VHF-FM SINCGARS dual, UHF-AM Havequick (HQ), comunicaciones en HF y radio LOS/ Satcom multibanda. En el caso del modelo español, recordemos CH-47 F MY II Bloque I, estará equipado con dos equipos ARC- 201D para VHF-FM, SINCGARS, un equipo ARC-220 para HF/ALE/ECCM, un equipo ARC-231 LOS, MARITIME, HQ, SINCGARS, DAMA, VHF y UHF, y por último dos equipos ARC-231 LOS, MARITIME, HQ, SINCGARS, SATCOM, DAMA, UHF y VHF. Una de las modificaciones solicitadas por la DIGAM para incluir en los aparatos españoles afecta a una parte de las comunicaciones donde se ha solicitado incluir la radio PR4G. Al tratarse de un equipo externo el mismo no se podrá integrar y gestionar en el CAAS debiendo ser instalado a posteriori fuera de este sistema y, por consiguiente, no pudiendo interactuar con los demás equipos de comunicación. Para poder instalar esta radio es necesario prescindir una de las dos radios ARC-231 de serie.
En cuanto a los equipos de radionavegación y navegación de largo alcance se instalan el ADF AN/ARN-149 (V)1, equipo VHF Omni-Range (VOR) /ILS/Marker Beacon (MB) AN/ARN-174 (V), y el TACAN AN/ARN-153 (V) como sistema táctico de navegación. Se completan estos equipos con la integración de dos GPS y dos inerciales denominados EGI.
Por último, en lo concerniente a los equipos de identificación amigo/enemigo se instala un transpondedor IFF con capacidad de modo 5.


La supervivencia del helicóptero ante amenazas externas la proporciona el ASE o Aircraft Survivability Equipament en el que se integran los sistemas de guerra electrónica pasiva de detección y alerta, así como los activos de contramedidas con los que hacer frente a las amenazas electromecánicas de radar, infrarrojas y ultravioletas.
Integrado en el CAAS el “Foxtrot” está equipado con los sistemas de alerta AN/APR-39A(V)1 y AN/APR-39C (V)1 que interactúan con los sistemas AN/ARR-57 (V) y AN/ALQ 212 (V)5.
Por su parte las contramedidas las proporciona el ICMD o Improved Countermeasures Dispenser System compuesto por un total de 8 dispensadores con capacidad para el lanzamiento de hasta 120 Chaff´s o 120 bengalas. Una Electronic Control Unit AAR-57 proporciona el control del módulo de carga M-130 y del de dispensación inteligente ALQ-212 (V), que mediante el secuenciador ALE-47 (V) en su conjunto, gestionan las ocho cajas de dispensación que se instalan en la parte externa del aparato a razón de 4 dispensadores para bengalas montados en lado izquierdo y derecho bajo el pilón trasero, más lo dispensadores para Chaff ubicados entre las estaciones 420.00 y 440.00.

El programa inicial español recogía que este sistema de guerra electrónica lo montaran solo los 4 primeros aparatos para a partir del quinto, empezar a montar ya en España equipos propios desarrollados por la industria de nuestro país, utilizando el quinto aparato como banco de pruebas para los nuevos sistemas.  Indra es la seleccionada para instalar esos nuevos equipos en el “Foxtrot”, como ha venido siendo frecuente con los anteriores modelos de helicóptero adquiridos por España. Se ha firmado un contrato con el fabricante quién hizo públicos parte de los equipos con los que se dotará al helicóptero y que pasan por el alertador radar ALR-400FD, alertadores misil y láser InWarner y contramedidas InShield (Dircm). Se quiere con ello estandarizar todos los sistemas de EW de los modelos de helicóptero de las FAMET, en lo que se pretende sea un ahorro de costes tanto de desarrollo, adquisición, operación y mantenimiento.

Sin embargo, esto provocará que se pierda una de las grandes mejoras que trae de la mano el “Foxtrot”, que no es otra si no la interactuación de equipos y sistemas a través del CAAS.
Por lo tanto, se eliminará el interfaz hombre/máquina (HMI) para la gestión de los equipos de guerra electrónica quedando este “fuera” del Sistema de Arquitectura de Aviónica Común, y perdiendo así parte de las ventajas que este ofrece.


Si como hemos visto desde el principio de este artículo, algunas de las grandes mejoras y diferencias del “Foxtrot” se presentan en su construcción modular y nueva estructura, el CAAS podemos decir que supone el segundo punto diferenciador, pero si vamos más allá, vemos que entre los sistemas que se integran en el nuevo sistema de aviónica común destacan por encima de otros, los equipos de ayuda al vuelo, planificadores de misión y pilotos automáticos.
Uno de estos sistemas es el DAFCS. El sistema de ayudas al pilotaje AFCS analógico del “Delta” se digitaliza para convertirse en el Digital Advantage Flight Control Sytem que mejora las ayudas en todas las actuaciones de vuelo por debajo de 20 nudos sobre el suelo, hasta el estacionario y toma. A velocidades superiores a estos 20 nudos el sistema presta las mismas ayudas que el AFCS del “Delta” actual.
Las lecturas tomadas a través de las tomas estáticas y dinámicas se transfieren a los procesadores ADC que en combinación con el GPS/INS ofrecen mediciones de alta precisión de las actitudes y velocidades del aparato, que son transferidos a cuatro sensores de posición para el mando cíclico, y pedales. Las actuaciones sobre el colectivo son enviadas al nuevo ILCA que reducirá y amortiguará un posible sobremando que pueda realizar el piloto sobre dicho mando. Todos los datos/registros se integran con los facilitados por el CAAS a través del Bus de aviónica que incluyen, además, parámetros de altura sobre el terreno facilitada por el radar altímetro, de par de motor, de potencia máxima de 10 minutos, indicadores de fallo de motor y datos de vuelo pregrabados para, procesados todos en su conjunto, ofrecer la ayuda al vuelo estimada en el momento concreto.
Una vez el aparato en el aire el sistema pasará a actuar en el modo de baja velocidad para todas aquellas actuaciones que se realicen por debajo de esos 20 nudos respecto al suelo, para corregir los movimientos sobre los mandos y mantener la estabilidad del aparato en función de su velocidad aerodinámica, posición del cíclico, peso, potencia, situación del centro de gravedad y altitud.
La tripulación puede seleccionar a través de cuatro pulsadores situados en el colectivo dos modos de actuación del DAFCS que pasan por ser el modo TRC o control del vuelo de traslación, y el modo PH para el control del vuelo estacionario.
En el primero de los modos el aparato se moverá lateral y longitudinalmente en base a la velocidad preestablecida para los movimientos de cíclico a un régimen de 1 nudo/seg. en la dirección de actuación del actuador de TRIM.
Por el contrario, el modo PH solo se activará a velocidades inferiores a 1 nudo sobre el terreno después de que entre 8 y 1 nudos el TRC desacelere el helicóptero para que este segundo modo pase a mantener la posición del helicóptero estable y lo lleve a estacionario. Como se realiza en el modo TRC para llevar a cabo movimientos de desplazamiento mediante el pulsador de TRIM, en este segundo caso las actuaciones sobre el TRIM proporcionaran un movimiento de un pie por pulsación en la dirección en la que esta se realice.


La digitalización trae de la mano la incorporación de nuevos equipos como en este caso es el de Gestión de Misión que, a través de las CDU´s y con la presentación de datos en las pantallas MFD, permitirá ejecutar uno o varios planes de vuelo preestablecidos para la misión concreta.
El plan o planes creados previamente será “cargado” en el helicóptero en tierra y con todos sus datos, y en combinación con los parámetros del aparato y prestaciones, el sistema realizará cálculos y un análisis de toda la información en su conjunto de tal forma que, en caso de encontrar algún parámetro de incompatibilidad para el vuelo, este avisará a la tripulación para que modifique el punto o los puntos que se marcan como no viables para su ejecución.
Los planes de vuelo son gestionados por el administrador de misión que se basa en el estudio de los ACP o puntos de control definidos por una posición fijada en base a unas coordenadas de latitud/longitud almacenadas en el sistema, de tal forma que todos los puntos conectados entre sí se convierten en el plan de vuelo. Estos puntos pueden ser modificados durante la misión y el administrador, en base al estudio de los datos de rendimiento del aparato, cálculo de peso y centrado, velocidades, resistencia, potencia disponible, potencia requerida, y consumo de combustible, alertará si encuentra alguna discrepancia con la modificación de los ACP o creación de otros nuevos, que afecten de forma negativa al plan de vuelo o que impidan su ejecución.
El sistema permite como mencionábamos la introducción de nuevos ACP durante la misión utilizando los mismos también como referencias para la navegación, como complemento a los cargados previamente en la planificación. Hasta un máximo de 100 puntos pueden ser almacenados y seleccionados por tipos, con asociación de información para cada uno de ellos de tal forma que el último será marcado como el objetivo sobre el que terminará dicho plan de vuelo.
En base al piloto automático de 4 ejes que monta el Foxtrot los planes de vuelo se pueden establecer también siguiendo unos “patrones establecidos” para:

- Patrón para procedimientos de búsqueda y rescate con vuelos en escalera, sectorizado,                        Circular, Expanding Square e Impromptu

- Vuelo con procedimientos Hover/Stop/Land

- Procedimientos de espera

- Procedimientos de aproximación

- Procedimientos improvisados.

Como vemos en este resumen de los sistemas de vuelo y ayudas al mismo, el “Foxtrot” trae de la mano un nuevo concepto para la planificación, el pilotaje, y actuaciones de la tripulación.

El Foxtrot supone un gran salto pasando de la analogía, al mundo digital

Se mejora la carga de trabajo y se hace imprescindible hacerlo en base a procedimientos CRM en cabina que lleven a protocolarizar las actuaciones sobre la máquina, a la vez que se eleva a la máxima potencia la fase de planificación de misión. Fase esta fundamental en las operaciones militares que pretendan obtener seguridad y el éxito sobre el adversario.
Y por supuesto, se eleva el grado de seguridad en todos los momentos del vuelo, especialmente en algunos sumamente peligrosos como, por ejemplo, los que se generan durante las tomas en polvo con el “brown out”. Ahora el aparato llevará a la tripulación hasta el suelo directamente.


Los conflictos actuales de carácter asimétrico distan de las contiendas convencionales de mediados y finales del siglo pasado, motivo por el cual los ejércitos occidentales se han visto obligados desde inicios del 2000 a crear nuevas doctrinas de empleo y utilización de sus fuerzas armadas. Igualmente se han visto obligados a plantearse y afrontar nuevos retos tecnológicos para dotarse de equipos y materiales capaces de ser usados en los escenarios remotos en los que hoy en día se desarrollan las operaciones.
Estos nuevos conceptos operativos, tácticos, logísticos y tecnológicos dan como resultado sistemas de armas que como en el caso del Chinook, evolucionan para adaptarse al momento y en este contexto, nombramos otro equipo que monta el “Foxtrot” que es fruto de esta evolución y cambio de las misiones militares.
El desembarco de tropas en zonas remotas, no reconocidas previamente y con elevados niveles de amenaza obliga a minimizar los riesgos en la medida de lo posible. Igualmente, el poder hacerlo en zonas en las que la toma de los helicópteros no es posible por sus especiales características todo, es vital llevarlo a cabo reduciendo los tiempos de exposición de la aeronave en el entorno de la operación. Y el Fast Rope es una de las maniobras creadas para todo ello.
Atendiendo a uno de los requerimientos españoles como indicaba al principio de este trabajo, se instalará en la parte trasera del helicóptero, dentro de la cabina de carga el sistema FRIES (Fast Rope Insertion and Extraction System) para poder realizar esta maniobra de desembarco rápido mediante cuerda. A derecha e izquierda en la parte superior se instalan dos vigas fijadas a la estructura que actúan de soporte al que anclar la cuerda de descenso y en cuyo extremo interno, cuenta con un sistema de suelta rápida para el lanzado de los cordajes al exterior una vez las tropas están en tierra.
También para poder realizar esta maniobra a través del agujero del gancho central se instala a la altura de este y en la estructura un soporte al que anclar la cordada de descenso.



Los conflictos actuales y aquellos que se estima se van a desarrollar en el futuro cercano, marcados por el tipo de amenaza que está sufriendo occidente, se plantean sobre teatros remotos y sobre un tipo de terreno que brinda ventaja al enemigo por encontrarse este en su propio medio. Un terreno que para las tropas occidentales presenta números hándicaps de dureza diversa. No detallaremos todos esos hándicaps, pero si vamos a mencionar uno que es común en todos esos teatros y que no es otro sino el de las elevadas temperaturas que se registran en los países que hoy en día suponen esta amenaza potencial, acompañadas todos del entorno árido. Entre todos los problemas que presentan temperaturas de entre 45 y 50º C para las operaciones con helicópteros, una de ellos se centra en el calor acumulado en cabina.
A la temperatura OAT hay que sumarle la que se acumula en las cabinas cerradas, la que generan los equipos personales de vuelo, los chalecos balísticos, el casco a lo que, por si no fuera suficiente, hay que añadir el calor residual que desprenden los equipos electrónicos de cabina. Esto, que pasa desapercibido para los ajenos, es uno de los factores precisamente más peligrosos y que más problemas puede presentar a la seguridad de las tripulaciones y de vuelo.
Hacíamos mención al término “lecciones aprendidas” al que las FFAA norteamericanas suelen recurrir para, en la medida de lo posible, implantar cambios de mejora. En este sentido han aplicado el término para buscar soluciones con las que intentar minimizar el factor calor que sufren las tripulaciones y en este caso, Boeing ha implantado en el Foxtrot el sistema denominado Air Warrior para sus tripulaciones. En base a un circuito cerrado de agua mezclada con una solución de alcohol, y mediante una uniformidad específica, las tripulaciones van “conectadas” a este circuito refrigerador que mueve la masa de agua a través del uniforme generando con ello el enfriamiento de la capa de aire que rodea el cuerpo de las tripulaciones, reduciendo la temperatura de estas. En el caso de los operadores y especialistas en la cabina de carga su utilización sin duda es más limitada al tener que desarrollar estos su trabajo a lo largo de toda la bodega, impidiendo poder estar conectados en todo momento a las tuberías del sistema.

La esencia del Chinook viene marcada por sus capacidades logísticas y de apoyo logístico al combate que hoy por hoy, lo hacen insustituible en este ámbito como helicóptero de transporte.
Capacidades para el transporte de carga externa mediante sus tres ganchos y capacidades de carga interna en su bodega de 9.24 metros de larga, 2.27 de ancha y 1.96 de alta que permiten poder transportar una diversidad de carga con la que facilitar las acciones militares, además por supuesto, de contribuir en todas las acciones de ayuda a la población civil cuando así es requerido.
Para facilitar el embarque, desembarque, manejo y anclaje de las cargas se creó en su día el sistema HICHS o Helicopter Internal Cargo Handling System compuesto por secciones de raíles y rodillos sujetos al suelo de la cabina, divididos en una sección para la bodega de carga, otra para la rampa y una tercera para las dos extensiones de esta.
Este conjunto de raíles, rodillos exteriores y rodillos-guía hasta ahora ha sido un equipo externo al helicóptero que se instalaba atornillando todos los componentes a las anillas de anclaje fijas de la bodega cuando era necesario utilizarlo, teniendo que ser desatornillado y almacenado externamente una vez usado. Esto en el caso del “Foxtrot” ha cambiado. En el nuevo Chinook el HICHS está integrado en la propia aeronave pasando de ser un equipo externo, a ser un equipo propio de montaje autónomo. Todos los conjuntos están ya distribuidos e instalados en sus ubicaciones del suelo de la cabina colocados de forma inversa a su posición de utilización es decir, solo será necesario darles la vuelta en un rápido movimiento para volver a encajarlos en esa misma ubicación con los componentes rotables a la vista. El sistema cuenta con dispositivos de bloqueo y accesorios de amarre para asegurar la carga una vez posicionada.
Terminado su uso se vuelven a girar los conjuntos sobre su misma posición para disponer del suelo diáfano.


Otra mejora se genera en la protección balística y así, el Foxtrot lleva ya de serie montada la preinstalación para la protección de suelo de cabinas y paredes de bodega de carga hasta media altura. Se elimina pues el actual sistema de los “Deltas” con el que se instalan en el piso de la bodega y secciones laterales las placas balísticas que en su conjunto suponen un peso añadido aproximado de 1.100kg.

Sistema de protección balística del CH-47 Delta

Unos de los equipos del “Delta” que se mantendrán en el Foxtrot, además de los referidos en la primera parte de este artículo, son los sistemas de armas para autoprotección. Se seguirán montando las ametralladoras de dotación M240 de 7,62 mm variando únicamente el sistema de afuste que de forma lógica viene de serie en el nuevo helicóptero.


Continuando con la seguridad, pero en este caso para el vuelo, se adquieren también sistemas Engine Air Particle Separator (EAPS) estándar Army para la operación en entornos áridos. Estos EAPS presentan alguna diferencia respecto a los actuales lo que generaba la necesidad de estandarizar con los equipos de serie que utiliza el Army.

EAPS del CH-47 Delta

Para terminar con la descripción de los cambios y mejoras más significativos que trae de la mano el nuevo Chinook, mencionaré la última de las tres modificaciones que se realizarán sobre a  requerimiento español. Se trata de la instalación de un freno de rotor. La proyección de nuestros helicópteros fuera de nuestras fronteras para participar en misiones internacionales requiere que los traslados hasta las zonas de despliegue puedan tener que hacerse por vía marítima. Es pues requerimiento oficial para la operación desde buques que los helicópteros cuenten con freno de rotor.
En base a un sistema hidráulico independiente y cerrado controlado manualmente, el freno se instala sobre la transmisión de combinación, acompañado de un depósito de aceite montado en el pilón delantero. Un cilindro de control se monta en la parte superior derecha de la cabina para el accionamiento manual del piloto haciendo uso de una palanca de frenado. Este sistema es capaz, en caso de emergencia, de detener el rotor al 100% de sus vueltas en un tiempo máximo de 25 segundos.



Atendiendo al calendario de entregas acordado con el US Army y el fabricante, se estima un plan de recepción de los nuevos helicópteros que ha dado comienzo en este 2022, para recibir el último aparato en 2024 si los plazos no sufren variación.

Con el nuevo Foxtrot España dispondrá de un Chinook que seguirá siendo punta de lanza y con él se podrán seguir disponiendo de todas las capacidades de transporte pesado que este aparato presta al Ejército y a las misiones que los compromisos internacionales nos demandan como miembros de la OTAN.

Fin